
1 / 20

FLAT Protocol Smart Contract Audit Report

2 / 20

Contents

1. Disclaimer

2. Introduction

2.1 About FLAT Protocol

3. Vulnerability Classifications

4. Executive Summary

4.1 Protocol Info

4.2 Scope

4.3 Findings Count

4.4 Findings Summary

5. Findings

5.1 Critical Risk

[C-01] Centralization risk whereby owner can withdraw all the vested FLAT tokens

5.2 High Risk

[H-01] Swap functions lack slippage protection

5.3 Medium Risk

[M-01] Pool fee tiers hardcoded to 3000 limiting swap flexibility

5.4 Low Risk

[L-01] User supplied deadline for swaps is not implemented correctly

[L-02] Missing storage gap in upgradable contracts

[L-03] Missing validation for admin status changes

[L-04] Missing validation in allowlist management functions

[L-05] Incorrect condition logic

[L-06] Use of transfer/transferFrom
[L-07] Floating/Outdated pragma

[L-08] use Ownable2step
[L-09] Missing event emission

[L-10] Missing zero address validation

5.5 Gas Optimizations

[G-01] Long require statements

[G-02] Use ++i instead of i++

3 / 20

1. Disclaimer

A smart contract security review can't find every vulnerability. It is limited by time, resources, and expertise.

The goal is to catch as many issues as possible, but I can't promise complete security. I also can't

guarantee that the review will find any problems. To stay safer, it's best to do more reviews, run bug bounty

programs, and keep monitoring on-chain activity.

2. Introduction

A time-boxed security review was done, with a focus on the security aspects of the smart contracts

implementation. The FLAT Protocol team has been very responsive to auditors inquiries, demonstrating a

strong commitment to security by taking into account all the recommendations and fixing suggestions from

the researchers.

2.1 About FLAT Protocol

The AFLAT contract allows users to mint AFLAT tokens by depositing stablecoins (USDC, DAI, or USDT).

FLATEngine.sol enables token holders to directly convert their AFLAT tokens into FLAT tokens by receiving

AFLAT via AFLATToken.sol, calculating the exact FLAT amount using a fixed conversion ratio, and minting

the new tokens through FLATToken.sol. Concurrently, Vesting.sol enforces a strict vesting schedule that

locks the converted FLAT tokens and gradually releases them over time, ensuring controlled liquidity.

Together, AFLATToken.sol, FLATEngine.sol, FLATToken.sol, and Vesting.sol establish a direct, secure, and

automated workflow for token migration and vesting.

3. Vulnerability Classifications

Vulnerability

Level
Classification

Critical Easily exploitable by anyone, causing loss/manipulation of assets or data.

High
Arduously exploitable by a subset of addresses, causing loss/manipulation of

assets or data.

Medium
Inherent risk of future exploits that may or may not impact the smart contract

execution.

Low Minor deviation from best practices.

Gas Best practices for optimaizting gas.

4. Executive Summary

4 / 20

4.1 Protocol Info

Name: FLAT Protocol

Security Review Type: Smart Contract Audit

4.2 Scope

The following smart contracts were in the scope of the security review:

Contract Address

AFLAT 0x1caDF57c2f8dfE096b579f149DA56434824f2F61

FLAT 0x8EB03ddb0A0c97Be83d38d9aD259a2DC57d40A85

Engine 0x41f6309ff01e5ee663e7c7a3efce77843e43d935

Treasury 0xD5Ad95D47fE88D8DDCcda7ABC4EEE48A2A5c3cDe

CexVesting 0xAc5f6B2A80d462C34569FA5Da299ae01F275262e

DevVesting 0x953CD4e021Dad7Db0d171472935EC8D5bB77C5cb

Investor Vesting 0x378BF335bB0043A4e7dd6510f89a456B96dCb3b1

MarkVesting 0x26c2150569166E247400585BA87041EFF1cdA151

Withdrawal 0xd30AF269Cc1d0b223D986E136663Ac0D44f34A77

4.3 Findings Count

Severity Count

Critical 01

High 01

Medium 01

Low 10

Gas 02

Total 15

4.4 Findings Summary

Overall, the code is well-written. During the review, a total of 15 issues were found. Out if which 2 were

Critical and High issues.

ID Title Severity Status

https://etherscan.io/address/0x1caDF57c2f8dfE096b579f149DA56434824f2F61#code
https://etherscan.io/address/0x8EB03ddb0A0c97Be83d38d9aD259a2DC57d40A85#code
https://etherscan.io/address/0x41f6309ff01e5ee663e7c7a3efce77843e43d935#code
https://etherscan.io/address/0xD5Ad95D47fE88D8DDCcda7ABC4EEE48A2A5c3cDe#code
https://etherscan.io/address/0xAc5f6B2A80d462C34569FA5Da299ae01F275262e#code
https://etherscan.io/address/0x953CD4e021Dad7Db0d171472935EC8D5bB77C5cb#code
https://etherscan.io/address/0x378BF335bB0043A4e7dd6510f89a456B96dCb3b1#code
https://etherscan.io/address/0x26c2150569166E247400585BA87041EFF1cdA151#code
https://etherscan.io/address/0xd30AF269Cc1d0b223D986E136663Ac0D44f34A77#code

5 / 20

ID Title Severity Status

[C-

01]

Centralization risk whereby owner can withdraw all the vested

FLAT tokens
Critical Acknowledged

[H-

01]
Swap functions lack slippage protection High Acknowledged

[M-

01]
Pool fee tiers hardcoded to 3000 limiting swap flexibility Medium Acknowledged

[L-

01]
User supplied deadline for swaps is not implemented correctly Low Acknowledged

[L-

02]
Missing storage gap in upgradable contracts Low Acknowledged

[L-

03]
Missing validation for admin status changes Low Acknowledged

[L-

04]
Missing validation in allowlist management functions Low Acknowledged

[L-

05]
Incorrect condition logic Low Acknowledged

[L-

06]
Use of transfer/transferFrom Low Acknowledged

[L-

07]
Floating/Outdated pragma Low Acknowledged

[L-

08]
use Ownable2step Low Acknowledged

[L-

09]
Missing event emission Low Acknowledged

[L-

10]
Missing zero address validation Low Acknowledged

[G-

01]
Long require statements Gas Acknowledged

[G-

02]
Use ++i instead of i++ Gas Acknowledged

6 / 20

5. Findings

5.1 Critical Risk

[C-01] Centralization risk whereby owner can withdraw all the vested FLAT tokens

Status: Acknowledged.

Context:

CEXvesting.sol#L153-L156

DevVesting.sol#L104-L107

InvestorVesting.sol#L166-L169

MarkVesting.sol#L96-L99

Description: The withdrawTokens function allows the owner to withdraw any amount of FLAT tokens

from the contract. This can reduce or fully drain the token balance, preventing beneficiaries from claiming

their vested tokens. If the contract lacks sufficient funds, users may lose their vested tokens permanently.

 function withdrawTokens(address to, uint256 amount) external onlyOwner {
 totalVestedAmount -= amount;
 flatToken.transfer(to, amount);
 }

Impact: Users may face delays in receiving their vested tokens.

Recommendation: It is recommended to implement a check to ensure the owner cannot withdraw more

then the totalAllocatedAmount.

Team Response

Owner is trusted so this is not an issue.

7 / 20

5.2 High Risk

[H-01] Swap functions lack slippage protection

Status: Acknowledged.

Context:

FLATEngine.sol#153

FLATEngine.sol#172

Description: The swapExactInputSingle and swapExactInputMultihop functions set

amountOutMinimum to 0, which disables slippage protection. Without a minimum output amount, swaps

can be executed at any price, regardless of how unfavorable it may be. This exposes users to MEV

sandwich attacks and significant value loss during high volatility or low liquidity conditions.

Impact: Malicious actors can front-run transactions and manipulate pool prices, forcing trades to execute

at extremely unfavorable rates. Users could receive significantly fewer tokens than expected, potentially

losing a large portion of their funds. MEV bots can sandwich these transactions, extracting value from every

swap. Recommendation: Add a parameter for minimum output amount and enforce slippage protection in

both functions.

Recommendation: Add a parameter for minimum output amount and enforce slippage protection in both

functions.

ISwapRouter.ExactInputSingleParams memory params =
ISwapRouter.ExactInputSingleParams({
 // ...
- amountOutMinimum: 0,
+ amountOutMinimum: minAmountOut,
 // ...
});

Team Response

To execute sandwich attack, Attacker have to sell bought tokens at higher price so they can make profit. We

are not giving option user to swap flat token so there is no issue of slippage. Cause there is no profit for

attacker to do sandwich attack.

8 / 20

5.3 Medium Risk

[M-01] Pool fee tiers hardcoded to 3000 limiting swap flexibility

Status: Acknowledged.

Context:

FLATEngine.sol#168

Description: The swapExactInputSingle function hardcodes the Uniswap V3 pool fee to 3000 (0.3%)

in the ExactInputSingleParams struct. While 0.3% is a common fee tier, hardcoding this value restricts the

contract's ability to utilize pools with different fee tiers like 0.05% (500) or 1% (10000). This design choice

limits the contract's versatility in interacting with various Uniswap V3 liquidity pools.

Impact: Users are restricted to pools with 0.3% fees only, preventing access to potentially more cost-

efficient pools or pools that only exist in other fee tiers. This could result in higher transaction costs or failed

transactions if the desired trading pair isn't available in the 0.3% fee tier.

Recommendation: Make the fee parameter configurable by modifying the function to accept a fee

parameter.

- function swapExactInputSingle(uint256 amountIn) internal returns (uint
amountOut) {
+ function swapExactInputSingle(uint256 amountIn, uint24 poolFee) internal
returns (uint amountOut) {
 TransferHelper.safeApprove(usdc, address(swapRouter), amountIn);
 ISwapRouter.ExactInputSingleParams memory params =
ISwapRouter.ExactInputSingleParams({
 tokenIn: usdc,
 tokenOut: spot,
- fee: 3000,
+ fee: poolFee,
 recipient: address(treasuryContract),
 deadline: block.timestamp + 10 minutes,
 amountIn: amountIn,
 amountOutMinimum: 0,
 sqrtPriceLimitX96: 0
 });
 amountOut = swapRouter.exactInputSingle(params);
 }

Team Response

I don't think this is the issue for what we should change the deployed contracts. cause another pool is

charging 1% fees which is more than what we have executed.

9 / 20

5.4 Low Risk

[L-01] User supplied deadline for swaps is not implemented correctly

Status: Acknowledged.

Context:

FLATEngine.sol#150

FLATEngine.sol#170

Description: In the swapExactInputMultihop and swapExactInputSingle function, swaps are

executed with a deadline of block.timestamp + 10 minutes. This deadline will always be valid when

the transaction is included in a block, as the hardcoded addition of 10 minutes to the current timestamp

serves no protective purpose. The timestamp of execution will always be block.timestamp, making this

deadline check ineffective.

Impact: The ineffective deadline mechanism means swaps could be executed under significantly different

market conditions than when the transaction was submitted. This could lead to trades being executed at

unfavorable prices if the transaction remains pending in the mempool for extended periods.

Recommendation: Allow users to specify their own deadline parameter when initiating swaps.

- function swapExactInputMultihop(uint256 amountIn, address token)
internal returns (uint256 amountOut) {
+ function swapExactInputMultihop(uint256 amountIn, address token, uint256
deadline) internal returns (uint256 amountOut) {
 TransferHelper.safeApprove(token, address(swapRouter), amountIn);
 ISwapRouter.ExactInputParams memory params =
ISwapRouter.ExactInputParams({
 path: abi.encodePacked(token, uint24(3000), usdc, uint24(3000),
spot),
 recipient: address(treasuryContract),
- deadline: block.timestamp + 10 minutes,
+ deadline: deadline,
 amountIn: amountIn,
 amountOutMinimum: 0
 });
 amountOut = swapRouter.exactInput(params);
 }

Team Response

Are not the issues for which we should change the deployed smart contracts.

10 / 20

[L-02] Missing storage gap in upgradable contracts

Status: Acknowledged.

Context:

CEXvesting.sol

DevVesting.sol

FLAT.sol

FLATEngine.sol

InvestorVesting.sol

MarkVesting.sol

Treasury.sol

Withdrawl.sol

Description: The contract inherits from UUPSUpgradeable but fails to include storage gap variables. In

upgradeable contracts, adding new state variables in future versions can override existing storage slots of

the child contracts. When a contract is upgraded, the storage layout must remain consistent to prevent data

corruption. Without storage gaps, new variables added to the parent contract in an upgrade will shift the

storage slots of the child contract, causing data to be read from or written to incorrect slots.

Impact: If there is no gap in storage, new variables added to the Vault contract could overwrite the

beginning of the storage layout. This could lead to unwanted behavior and serious security issues

Recommendation: Add a storage gap to the contract to reserve storage slots for future use and prevent

storage collisions.

Team Response

If we add new state variable at last than it will not affect storage slots in bad way.

11 / 20

[L-03] Missing validation for admin status changes

Status: Acknowledged.

Description: The setAdmin and removeAdmin functions directly modify admin status without first

validating the current state. When setting a new admin, the function does not check if the address is

already an admin. Similarly, when removing an admin, there's no verification that the address is currently an

admin. This allows redundant state changes that emit misleading events and waste gas.

Impact: While this doesn't pose a direct security risk, it leads to unnecessary gas consumption.

Recommendation: Add validation checks before modifying admin status.

function setAdmin(address _admin) public onlyOwner {
+ require(!isAdmin[_admin], "Address is already admin");
 isAdmin[_admin] = true;
 }

function removeAdmin(address _admin) public onlyOwner {
+ require(isAdmin[_admin], "Address is not admin");
 isAdmin[_admin] = false;
 }

Team Response

Are not the issues for which we should change the deployed smart contracts.

12 / 20

[L-04] Missing validation in allowlist management functions

Status: Acknowledged.

Context: Contract.sol#L160-L165

Description: The addToAllowlist and removeFromAllowlist functions modify allowlist status without

checking the current state. The functions don't verify if an address is already allowlisted before adding it, or

if it's actually on the allowlist before removal. This allows redundant operations that consume gas without

making effective state changes.

Impact: While this doesn't pose a direct security risk, it leads to unnecessary gas consumption.

Recommendation: Include validation checks before modifying allowlist status.

Team Response

Are not the issues for which we should change the deployed smart contracts.

13 / 20

[L-05] Incorrect condition logic

Status: Acknowledged.

Context:

MarkVesting.sol#L79

Description: The if statement in the release() function uses an "and" condition (&&) to check if the

amount is zero and greater than the contractʼs token balance. This logic flaw means that if either condition

is not met, the transaction will proceed, even if one of the conditions that should trigger a revert is satisfied.

Impact: This incorrect conditional check may allow transactions to execute when there are no tokens to

release or when the token balance is insufficient.

Recommendation: Replace the && operator with an || operator so that the transaction reverts if either the

amount is zero or it exceeds the contract's token balance.

- if (amount == 0 && amount > flatToken.balanceOf(address(this))) {
+ if (amount == 0 || amount > flatToken.balanceOf(address(this))) {

14 / 20

[L-06] Use of transfer/transferFrom

Status: Acknowledged.

Description: Not all ERC20 implementations are well behaved and revert on failure. Some simply return

false and some might not return anything at all (USDT on mainnet).

Recommendation: Consider using OpenZeppelin SafeERC20s safeTransfer and safeTransferFrom
to be as safe as possible for any atypical ERC20 tokens.

15 / 20

[L-07] Floating/Outdated pragma

Status: Acknowledged.

Description: All contracts accross the codebase use the following pragma statement:

pragma solidity ^0.8.24;
pragma solidity ^0.8.24;

Contracts should be deployed with the same compiler version and flags used during development and

testing. An outdated pragma version might introduce bugs that affect the contract system negatively or

recent compiler versions may have unknown security vulnerabilities.

Recommendation: It is recommended to lock the pragma to a latest and specific version of the compiler.

16 / 20

[L-08] use Ownable2step

Status: Acknowledged.

Description: The "Ownable2Step" pattern adds safety to smart contract ownership transfers. The new

owner must accept before the transfer is complete, preventing mistakes.

Recommendation: It is recommended to use Ownable2StepUpgradeable.

17 / 20

[L-09] Missing event emission

Status: Acknowledged.

Context:

MarkVesting.sol#L96-L99

MarkVesting.sol#L101-L103

Withdrawl.sol#L72-L74

Withdrawl.sol#L77-L79

InvestorVesting.sol#L158-L160

InvestorVesting.sol#L166-L169

FLATEngine.sol#L217-L219

FLATEngine.sol#L224-L226

FLATEngine.sol#L232-L234

FLATEngine.sol#L240-L242

FLATEngine.sol#L248-L250

FLATEngine.sol#L270-L272

FLATEngine.sol#L278-L280

FLAT.sol#L61-L63

AFLAT.sol#L251-L253

AFLAT.sol#L255-L257

AFLAT.sol#L260-L262

Treasury.sol#L71-L74

Treasury.sol#L77-L80

Treasury.sol#L107-L109

DevVesting.sol#L104-L107

DevVesting.sol#L109-L111

Description: Important functions are missing event emissions. Without events, it's hard to track owner

changes off-chain, making audits and monitoring difficult.

Recommendation: Emit an event for critical parameter changes.

18 / 20

[L-10] Missing zero address validation

Status: Acknowledged.

Description: The contracts set new addresses without checking for zero addresses. If a zero address is

used, the contract may stop working, or tokens could be lost forever.

Recommendation: Add zero address validation to all the instances where addresses are being set.

19 / 20

5.5 Gas Optimizations

[G-01] Long require statements

Status: Acknowledged.

Context:

Withdrawl.sol#L106-L106

Withdrawl.sol#L109-L109

InvestorVesting.sol#L142-L142

Description: The require statements use a string to show errors when validation fails. If the string is over

32 bytes, it needs extra memory storage and calculations. Keeping it under 32 bytes saves gas.

Recommendation: Keep strings in requirestatements under 32 bytes. This reduces gas costs during

deployment and when the check runs.

20 / 20

[G-02] Use ++i instead of i++

Status: Acknowledged.

Context:

AFLAT.sol#L180

AFLAT.sol#L191

Treasury.sol#L59

Description: ++i costs less gas than i++, especially when itʼs used in for loops.

